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ABSTRACT

The experimental verification of attitude control designs for flexible

spacecraft is essential for reliable operation in space. The Flexible Spacecraft

Simulator (FSS) at the Naval Postgraduate School is designed to test a variety of

control designs. The experimental setup simulates pitch axis motion of a flexible

spacecraft consisting of a rigid central body and a flexible appendage connecting

a reflector. The primary actuators are a reaction wheel and thrusters. Angular

position information is obtained with a rotary variable differential transformer

(RVDT) and angular rate information is obtained by a solid state rate sensor.

Two analytical models are derived: one based on cantilever modes, the other

based on system modes. Both are the result of linearized equations of motion

which assume small flexible displacements and rates. Slew maneuvers are

conducted using four separate controllers. They are proportional-derivative

(PD), torque profiles, bang-bang and optimal controllers. Techniques for state

estimation are explored for the optimal controller since the standard estimation

methods prove to be unsatisfactory. The sinusoidal torque profile delivers the

best performance overall with the PD a close second. Momentum wheel

desaturation with thrusters and thruster slew maneuvers are also performed. In

all cases, experimental results are in close agreement with analytical predictions.
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I. INTRODUCTION

A. MOTIVATION FOR RESEARCH

Analytical techniques in flexible structural dynamics and control are rapidly

accumulating in the literature while relatively few experiments [References 1, 2,

3] exist for verification. This thesis develops a mathematical model for an actual

system exhibiting the low frequency structural characteristics of a spacecraft

structure. The model is developed by using rigid body coordinates for the

central body and cantilever modal coordinates for the flexible body. Using this

model, classical and modem control theory are applied within the constraints of

the experimental hardware. The analytical simulation and experimental results

are then compared to examine the accuracy and applicability of the analytical

model.

B. SCOPE OF THESIS

Chapter II describes the experimental setup with its assumptions and

constraints. Chapter III develops the equations of motion by Lagrangian

dynamics using a hybrid coordinate system and establishes the two analytical

models. These equations are linearized on the assumption of small displacements

and rates. The finite element model for the cantilever modes is also presented

for the first six modes.

Chapter IV derives the four controllers and compares the analytical

predictions with exp;erimental results. The PD controller uses gains derived

from the rigid body model limiting the control bandwidth to one-half of the

fundamental cantilever frequency. Two torque profiles are discussed. The

optimal controller is presented here and again in Chapter V. Chapter V explores

1



the problem of constructing an adequate estimator and develops an interesting

solution. Chapter VI derives the eigenstructure assignment regulator and

estimator which allows the designer to place poles for stability. This is only a

preliminary developement and does not produce adequate results to date.

Chapter VII concerns thruster actuation including a system overview.



II. EXPERIMENTAL SETUP

A. SIMULATOR CONFIGURATION

The Flexible Spacecraft Simulator configuration is shown in Figure 1. It

approximates the pitch axis motion of a three dimensional model used in a study

conducted by INTELSAT (Reference 4). The Simulator at NPS has a central

rigid body representing a spacecraft main body and a flexible appendage

corresponding to a reflector supported by a flexible astromast. It is floated on a

flat, smooth granite table to reduce friction and to simulate low-gravity

operations in two dimensions since gravity acts perpendicular to all

displacements and consequently does no work. The central body is attached to an

I-beam above the table through an air-bearing which allows only rotational

motion. The assemblage is actuated by a momentum wheel mounted on the main

body. An RVDT and a rate-gyro provide the angular position and velocity of

the central hub. The fundamental cantilever frequency of the flexible structure

is 0.14 Hz.

Control laws are implemented using a VAX station 3100 in conjunction with

an AC-100 controller manufactured by Integrated Systems, Inc. The System

Build software associated with the AC-100 runs with MATRIXx and allows the

user to build control schemes with block diagrams similar to a flow chart. The

computer translates these diagrams to C code which is subsequently loaded into

the AC-100 for execution. Included in this process is the ability to create custom

on-screen displays which allow the user real-time interaction with the controller

while it is running. The AC-100 hardware consists of A to D and D to A

converters providing many options for sensor and actuator connections. The

Flexible Spacecraft Simulator is shown in Figure 2.

3



THRUSTER SYSTEM/

AIR TANK THRUSTER MANIFOLD

/AIR BEARING WITH RVDTr

MOMENTUM WHEEL

ASSEMBLY
GRANITE TABLE

FLE)CIBLE ARMAIN BODY

AI AS MASS INTENSIFIERS/

Figure 1. Flexible Spacecraft Simulator Configuration
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Figure 2. Flexible Spacecraft Simulator

A full description of the sensors, momentum wheel assembly and the AC- 100

controller can be found in Reference 4. The thruster system is shown in Figure

3. It consists of a 13.3 cubic foot, 3000 psi supply tank connected to a 3000-200

psi pressure regulator with 3500 psi flexible hose. Pressure gauges are

positioned on both sides of the regulator to monitor fluctuations. Two 250 psi,

0.0224 Ibm/sec hydrazine solenoid valves obtained from the Naval Research

Laboratory provide on/off thrust control. The system uses 200 psi dry air so

thrust levels are less than those for hydrazine. The valve outlet is one-sixteenth

inch diameter which provides 0.4178 lbf thrust. The solenoid valves are attached

to a manifold in opposing positions.



High Pressure
Fleibic Howe

Low Pressure Gauge

Pressure Regulator

Solenoid Valves

Figure 3. Thruster System Configuration



III. ANALYTICAL MODEL

A. EQUATIONS OF MOTION

The analytical model [Reference 5] is shown in Figure 4. It is comprised of

a flexible structure attached to a rigid central body restricted to rotation only.

The X, Y, Z axes are inertially fixed. The x, y, z axes are fixed with respect to

the rigid body and are obtained through a rotation 0 about the Z axis. The

location of the wheel rotation axis is (xo, Yo) and the coordinate system xw, Yw

rotates with the wheel. The equations of motion are derived by using a hybrid-

coordinate system, rotational angle 0 of the rigid body and cantilever modal

coordinates of the flexible body. Lagrange's equations are used and require an

expression for the kinetic energy, T.

T (VRVR)dm + (V 'VF)dm

+ I(fV(,V)dm
Jw (1)

where KR = velocity of a particle on the rigid body

VF = velocity of a particle on the flexible body

Vw - velocity of a particle on the momentum wheel

The velocities VR, wV and VF are given by

VR = X ii (2)

VF = Okx + + Okxu (3)

Vw (0 + 9w)k x rw + Ok x ro (4)

where 7R position vector of a particle on the rigid body

rF position vector of a particle on the flexible body

7



rw = position vector of a particle on the momentum wheel

S= elastic deformation vector of a particle on the flexible body

i, J, k = unit vectors along axes x, y, z

Flexiole Body

Figure 4. Analytical Model

Table 1. Numerical Values

Name [ Symbol Value Units101

Total MOI lz2 11.17 kg-m 2

Wheel MOI Iw 0.0912 kg-m 2

Wheel mass Mw 10.66 kg

Total mass Mt 65.35 kg

Center of Wheel t 0.20 m

R



Substituting Equations (2), (3) and (4) into Equation (1) yields

22 + y2)dm + If [022 + y) + + +) + ) (u2 + u2) lm

+ [2(XFdy - YFfx) + 20 (XFux + YFUy) + 2*1UX _ ixuy )Icn
F

+f[02f(x + (X + Y + (Xoxw + YoY + + Yw)]dm

OO(2+ y2 ) + 20w0 (xoxw +yy~d~

-i (5)

The generalized coordinates used for the equations of m.x-on will be 0, 0w

and u. Assuming the wheel is rotating about its center of mass eliminates terms

with single powers of xw and Yw. Assuming that u, U, 0 are small, terms higher

than second order resulting from any combination of u, U, 0 can be ignored.

This eliminates terms 4, 6 and 7 from Equation (5). Terms 8 and 9 represent the

contribution of the wheel's inertia to the total inertia. Consequently, Equation

(5) reduces to

.2 _ w00 +.2 ( t2+2)dm
T = ,0 + ++ xy

+ Of (XFUy - yF6,)dm

F (6)

where

IZZ = I + IFz + w

fj (xR + Yj)dmi + j (xj + y2F)dm + jW (4W + )M

+ m xj + y9) (7)

9



The elastic deformation u is represented in terms of cantilever modal

coordinates of the flexible body as

n
ux= O qi(t)

i=lI

ny= ¢i'qi(t)(8
i=1 (8)

where for the ith mode, qi(t) is the modal coordinate, €i is the component of the

modal vector along the x axis, and 0iy is the component of the modal vector along

the y axis. Substituting Equation (8) into Equation (6) gives

T = _i,02 + 1 .2

2 2 IwOw + Iw0w

+ Oij + Oyro ']4A ~M+ 0f XF~ Oq1 - YFX xi
f i=l j=1 

FIi= =

iF (9)

Normalizing the modal vectors to unity modal masses (mass normalizing) and

using orthogonality of the modal vectors, Equation (9) is simplified to

' .2n 
n

IT z = +1, IwOw + Iw0Ow + (i il
22i=I i=l (10)

where

= j (xoiY - yp4)dm

= rigid elastic coupling.

10



The potential energy of the flexible body due to elastic stiffness in terms

of modal coordinates is given by

n
2 ly, i qij
2 i=l 01

where oi is the is the natural frequency of the ith mode.

The work done in the system is

6W TtS(O + Ow) - TtSO +TD80 (12)

= Tt5Ow + TD80

where TD external torque on the main body

Tt = TM + TF = torque acting on the wheel and the reaction torque

torque on the main body

The Lagrange's equation is

d)ti aLii = Qi
dt ~ 9j 1 i (13)

where L = T - V, gi is the generalized coordinate and Qi is the generalized force.

The generalized coordinates for the system are (, Ow, qi, ..., qn The torque Tt

is applied to the rigid body. Therefore,

Q9 = TD (14)

Substituting Equations (10), (11) and (14) into Equation (13), the equations of

motion of the system are

n
IZZO + Z Dqi + 10w = TD

4i + toqi + Dj6 = 0 (15)

Let IwOw= I,, = -Tc (16)

11



where Q = spin rate of the wheel with respect to the central body

Assuming modal damping for the cantilever modes, the equations of motion

become

n
Izz0 + Diti = TM = TD + Tc

i=lI

qi + 2 iwili + c2iqi + Die = 0 (17)

A state space representation of the system equations is

X =[A]X + [B]U
Y =[C]X +[D]U (18)

where X =[0, q, q., 0, 4q1, qN "

Y=[O,e~

U =Tt

D=0

... 0 I° 0 ... 0
10 0 ... 0 0 I°  ... 0

[A -L 6 F F0 HI .. HV . G -DiFn 0 JI ... DIHn

0 -DnF ... -G n 0-IH .... J (19)

where

n
= x - (Di)2

i=1

Fi =D i (J2

2

Gi= cji Izz + DiFi (20)

1.



Hi = 24i(OiDi
Ji = 24iwiloz + DiHi

0 ... 0 0 0 ... 01
[C 00 ... 0 1 0 . 0] (21)

B. SYSTEM MODEL

The system model approach begins with the linearized, undamped equations

of motion (Equation 15). Instead of directly forming the states and the state

space model of Equations (18) through (21), Equation (15) is expressed as a

second order partitioned system.

[z I DT 0t T~ t~~~I

D I I i0 I 01X qJ 0 (22)

D2

D5
w h ere a n ad ~ D4 (3".D6 (23)

The matrix coefficient of acceleration will be called M and the matrix

coefficient of position will be called K. The vector D is defined by Equation

(10) and represents the rigid elastic coupling. The matrix X is a diagonal matrix

of the cantilever natural frequencies squared. M and K are both 7X7 matrices.

The lower right partition of M is actually the modal matrix for the cantilever

13



(flexible) equation and it is normalized to unity in the finite element program.

The system approach is to normalize M to decouple the two equations. First, the

coordinates are mapped into system modal space

S24,,

(24)

Equation (22) now takes the form

[M] [i] (i7) + [K] [(z] (Tl) =T(}2
0 (25)

Pre-multiplying Equation (25) by 4D1 gives

E'i T1] L 0 *"K * ~l * , (26)

For proper normalization, we require that

VIMO) = I

IK4O = A (27)

where A is the diagonal matrix of system natural frequencies. The modal matrix

(D may be obtained by first solving the associated eigenvalue problem

XMp( = Kqp (28)

whose solution yields eigenvectors of the form

.IM(P c (29)

The matrix C is diagonal with constant elements. If we normalize C so that

14



c-1c c-1 = I (30)

then we can identify the modal eigenvectors as

D=pC-1 (31)

Now that the system modal natural frequencies and system modal matrix

have been found, Equation (22) is decoupled and the state space representation of

Equation (18) can be used. The state vector, X, is now represented by the system

modal coordinates and their derivatives. The state space representation is

I ( } (32)

The A matrix is simply written as

F 01 1
[A7-3 -- -

-A 1 -24t) (33)

1w l  ... 0

where "0 . 6(06  (34)

This term represents system damping and is assumed to be proportional. It will

be determined experimentally and added to the model. The A matrix is 14X14

and is much simpler than the one of Equation (19).

The B matrix is given by

( }{ 'I TM (35)

15



TM

where 0
TM 0

0
0
0

(36)

Appendix C contains the numerical values for the A and B matrices.

Appendix D contains verification of the system modal frequencies.

C. FINITE ELEMENT MODEL

A finite element analysis was done to determine cantilever frequencies and

mode shapes for the flexible appendage using the PAL2 software. Figure 5

shows the locations of the 20 nodes on the undeformed arm. Node one is the

base point which is connected to the main body. Consequently, it is assumed to

be fixed. The other 19 nodes are constrained to x-y plane deflections only and

rotation about the z-axis. Figures 6 through I1I show th resulting mode shapes.

The modal frequencies are given in Table 2. The 0.14 Hz fundamental

frequency has been experimentally verified.

o1



p p p p .:4

2 8 9 10 11 12 13 14 3

5

15

16

17

18

19

20

6

7

Figure 5. Node Locations
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Figure 6. First Mode

Figure 7. Mode Two

I R



KI

Figure 8. Mode Three

Figure 9. Mode Four
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K

Figure 10. Mode Five

K.

Figure 11. Mode Six
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Table 2. Modal Frequencies

Mode [ Frequency (Hz)

1 0.139

2 0.420

3 2.463

4 4.295

5 6.860

6 12.820

21



IV. SLEW CONTROL

A. PROPORTIONAL-DERIVATIVE CONTROL

Analytical simulations are performed using the first six cantilever modes of

the flexible appendage. This causes X in Equation (18) to be a 14 state vector.

The modal characteristics, natural frequencies and mode shapes are determined

using the PAL2 finite element analysis program. For all the modes, modal

damping has been experimentally determined to be 0.4 percent critical damping.

Strain gauges are used to evaluate the modal damping.

1. Formulation

The classical technique of proportional derivative control is used by

feeding back the central body angular position and angular rate. The control

torque Tc is given by

Tc= -k(Oe + TO) (37)

where (e = angular error of the rigid body = 0 - 0 ref

0= angular rate of the body

k = gain for the control

= time constant

The equation for the reaction wheel is

IwK2 = -Tc (38)

A variable cable induced spring torque affects the nominal angular position of

the experimental setup. Assuming this torque to be constant during the

maneuver,

Tt = -k(Oe + O) + TD (39)

22



2. Implementation

The MATRIXX block diagram for this simulation is shown in Figure 12.

The analytical simulation and experimental results are plotted together in Figures

13 and 14 for a 30' and a 600 slew. The dashed lines represent experimental

data and the solid lines represent analytical prediction. There is a steady state

error given by 0

k (40)

The control gains are determined with the classical pole placement

analysis for a rigid body. The controller natural frequency is limited to less than

half the fundamental frequency of the flexible appendage and the damping ratio1

is set to 0.9. The classical characteristic equation for the rigid s2 plant is
S2 + 2(nos + n -0 (41)

(on = controller natural frequency = 0.06 Hz

= damping ratio

From this the poles of the rigid system can be determined leading to the rigid

body gains using MATRIXx.

k = 1.3985 N-m/rad

k- = 6.6773 N-m-s/rad

The steady state position error is caused by a spring torque in the

cabling to the motor. The cable spring torque is evaluated by observing the

reaction wheel speed change after the assemblage has reached a steady state. The

experimental steady state position error can be used to check the spring torque

calculation with Equation (40). Figure 16 is the analytical arm deflection over

time for a 30' slew. Figure 17 shows the arm motion for a 600 slew. The plots

are adjusted to fix the base point for better comparison.
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Looking at the motion in the phase plane gives further insight (Figures

17 and 18). The trajectory deviates significantly from the minimum time

parabolic path. It is easy to see that the PD scheme defeats itself by inducing

large initial oscillations that must be dealt with as the slew maneuver is

performed. This slows the controller response which reduces its performance.

Figures 13 and 14 show a substantial control effort when the controller is turned

on. This equates to an initial impulse followed by compensating control torques

which is undesirable since the initial torque causes large fluctuations in the

flexible appendage. The PD controller is also in contradiction to our linear

assumptions of small displacements and rates. The initial positive angular rate is

a result of anomalies in the AC-100/MATRIXx output interface. It does not

interfere with the a:.,'ysis of the control system.
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Figure 17. Phase Plot for a 300 Slew
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B. OPTIMAL CONTROL

Using rigid body gains in the feedback control loop is too basic and does not

produce the optimum slew maneuver. The ultimate goal of this research is to

slew as quickly as possible while suppressing the flexible motion as much as

possible. By using a linear-quadratic-gaussian (LQG) compensator we can

determine feedback gains based on the rigid and flexible dynamics of the system.

The LQG compensator is composed of a linear regulator and a Kalman filter

estimator making the estimator more robust in the presence of sensor noise. The

regulator design assumes full-state feedback. Feeding back all of the states

should yicd an improvement over classical PD control.

1. Formulation

The optimal gains are calculated by minimizing the cost function

[Reference 7]

cost = (XTRxxx + uTRu)dt (42)

where Rxx is the state weighting matrix and 1uu is the input weighting matrix. To

determine the gains, we must first solve the Ricatti equation for P

0 = FA + ATp - _PBRUBTp + R,, (43)

where A and B are the system dynamic and control input matrices. The optimal

regulator gain is

KR = R- BTp (44)

The Kalman filter gains are determined in a similar manner using the

duality principle. The state and input weighting matrices, Rxx and Ruu, are
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replaced by the state and observation noise intensities, Qxx and Qyy. The linear

time-invariant system is

i = Ax + Bu + Fw

y = Cx + Du + v (45)

where F = the input disturbance matrix

w = the input disturbance

v = the measurement noise

The observation noise intensities are related by the correlation matrices

E(v(t)vT(T)) = Qyy5(t - t)

E(Fw(t)vT(t)) = Qxy5(t - t) (46)

where E is the expected value operator and 5 is the delta function. The system is

assumed to be driven by only white noise with zero mean value.

2. Implementation

A random disturbance of 0.1 N-m amplitude is assumed so that

Qxx = B(0. I)BT  (47)

Qy is a 2X2 matrix with diagonal elements corresponding to noise from the

RVDT and the angular rate sensor respectively. These have been experimentally

determined as

I E-7 01
Qyy=I 0 5E-61 (48)

The off-diagonal elements represent cross-correlation of the sensors noises which

are assumed to be zero.

The Kalman filter gains are computed by again solving the Ricatti

equation (Equation 42) and applying Equation (43). The gains are now

represented in a 14X2 matrix since the inputs to the Kalman filter are the two

sensed states, angular position and angular rate.
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The estimator is now .ynthesized using the A, B and C matrices of the

dynamic system and the estimator gain, KE.

SOBS=[ A-KEC -B I KE
C 1 0 1 0 (49)

where SOBS is the estimator system matrix. The estimated states are then fed to

the regulator and result in a commanded torque. The block diagram for the

system is given in Figure 19.

To obtain numerical values for the estimator and regulator gains, the

input and state weighting matrices must be determined. Rxx is a 14X14 diagonal

matrix assuming that none of the states are cross-correlated. Each term on the

diagonal corresponds to a state. The body position and body rate (states I and 8)

are of primary importance and receive a value of one. The first and second

modal coordinates and rates (states 2,3,9 and 10) are also of interest and receive

weights of 0.5. The remainder of the states are weighted at 0.1. Rou is a scalar

since torque is the only system input and is set at 7 in order to prevent excessive

oscillations. Figures 20 and 21 show the analytical and experimental results for a

300 and a 60' slew. The torque prediction is nearly perfect while the position

and rate respond faster than predicted. The flexible appendage deformation is

illustrated in Figures 22 and 23.

Comparing the estimated states with the modeled states (Figures 24 and

25), it is apparent that problems exist in the state reconstruction. The time

required for the estimated states to approach the modeled ones exceeds 25

seconds which is unsatisfactory for real-time control. The body position and rate

are the exceptions but those states are the ones fed into the estimator so fast

reconstruction is expected. The lack of any sensor information from the flexible

nodes severely inhibits the accurate and timely flexible state reconstruction. As a

result, the regulator gains are amplifying the errors in the state reconstruction
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which produces a non-optimal control torque shifting the control bandwidth to

the right.

01merete SW.z-41ock Sawial zaterVal ri,,t a.VIO af. zrts Kit. tputa KI*b
kfitul 0.100S.32 Pareat

Figure 19. LQG Controller Block Diagram
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The phase plane motion is shown in Figures 26 and 27. Poor state

reconstruction accounts for the undesirable phase space motion. By adjusting

Qxx and Ruu the trajectories can be manipulated so that the control bandwidth is
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below the fundamental frequency of the flexible appendage so as not to stimulate

the flexible modes.

Achieving adequate state reconstruction is difficult (if not impossible) at

this point without at least one flexible state available. An overhead camera

system developed by Stan Schneider at Real-Time Innovations, Inc.,will be used

to obtain position and rate for one or more nodes in the future.
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Figure 26. Phase Plot for a 300 Slew
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C. CLASSIC BANG-BANG CONTROL

1. Formulation

The drawbacks of the PD controller lead to the investigation of other

techniques. One is the classical Bang-Bang controller which gives the minimum

time maneuver for a rigid body. It employs the well known position plus rate

feedback law

u = -N sgn[S] (50)

S 0+ 6
2N

N = constant saturation torque

to apply torques to the rigid body. From an initial point in the phase plane, the

rigid body trajectories theoretically follow parabolas into the origin producing a

minimum time maneuver for the given saturation level. When flexibility is

added to the system the behavior changes.

2. Implementation

Figure 28 is the block diagram for the system. The experimental results

exhibit an even greater level of chatter than was analytically predicted (Figures

29 and 30). The position and rate trajectories are in good agreement despite the

chatter and the inability of the system to keep up with the rapid switching. The

torque level chosen for these results is 0.3 N-m. This shows the tradeoff that

must be considered in the Bang-Bang scheme. The torque level must be high

enough to complete the maneuver in a reasonable amount of time while being

low enough to avoid unreasonable oscillations in the flexible appendage. Figures

29 and 30 indicate that the torque required to be comparable with the PD slew

time induces unacceptable oscillations in the arm which tend to resonate when the
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desired position is reached. Figures 31 and 32 also show undo arm oscillations

for this torque level. A lower torque level (0.2 N-m) reduces these oscillations

significantly. However, the maneuver time is in excess of 20 seconds for a 30'

slew which is much slower than the PD slew time.

Figures 33 and 34 show the comparison between the analytical and the

experimental results in the phase plane for a fixed rotational inertia subject to the

same saturation level. It is apparent that the trajectory behavior is altered and

the maneuver takes more time. As the saturation level is raised the controller

bandwidth increases driving the flexible modes to a greater extent. To overcome

this a torque shaping model can be used. This process is described in the next

section.

DiATvte 8e-Block SNWLIat lme-r- rizat Saple ht.TbqPtg aft.0stpot, 2tnble
Imi. 0.910 6. 2 10 tar..t

Figure 28. Bang-Bang Block Diagram
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D. TORQUE SHAPING

1. Sinusoidal

The initial control effort required in the PD scheme imparts an

unacceptable jolt to the system. To counter this, we need tc smooth out the

transition from the pre-control steady-state to the initial torque command. Also,

the PD controller employs large angle maneuvers with significant angular rate

changes. This is not consistent with the assumptions made in our linear model.

One method used to address these problems was introduced in Reference 2

Instead of controlling the position difference and angular rate to zero, the torque

shaping technique builds reference position and rate trajectories which produce

pre-designed torque profiles. To smooth out the initial spike in the PD control

effort, we want to model a sinusoidal torque that is smooth and continuous. The

block diagram is given in Figure 35.

Tc = Asin 2mrtP (51)

where A = Peak amplitude of the control effort

P = Desired slew time (period of the sinusoid)

The control torque relates to the wheel and body torques as

Iwo = -J = 10 (52)

and the feedback control law is

u = -k(Oe + tOe) (53)

0e = 0 -ref

0e = 0 - 0ref

The reference curves must be in terms of the body position and rate since
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these are the only states being sensed. They are derived by putting Equation (52)

in terms of the body's acceleration and performing successive integrations.

=- Asin 2n
IZ, P (54)

0=AP Fcos 2 r 1
2irtl9 P (55)

0 = AP---Psin 27t- t]

2nIOzL2n P(56)

Applying the boundary conditions 0 = A0 at t=O and 0 = 0 at t=10 for a ten

second slewing time and differentiating successively, the reference position and

rate are

0 ref = A1 + -sin P- t}j (57)

Oref = _Arc 2mr - I
P L P 1 (58)

where AO = Difference between current and desired position

The body acceleration is given by
0ref 2 rMAO sin 2t _Asin 2nt

p2  P P (59)

The reference curves are shown in Figure 36. By manipulating

Equation (44), we can examine the tradeoffs between control effort and slewing

time with respect to slew angle. The amplitude of the control effort is

A = 2nI~zA0
p2  (60)

and the slew time is given by

A (61)
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By pre-determining the shape and amplitude of the control effort, the

slew time required for a rigid body can be determined. By implementing these

reference curves into our flexible model, an analytical prediction can be

developed to approximate the ensuing motion. Figures 37 and 38 compare the

predicted motion and the experimental results using the same gains determined in

the PD control law during a 30' and 600 slew. Figures 39 and 40 are the arm

deflections for the same events. Notice the deflection is slightly less than that of

the PD controller for the same slew angle while the time required to complete

the maneuver is almost the same.

So far, the PD and the Sinusoidal Torque Shaping schemes seem to do

the job equally as well with neither showing a clear advantage over the other.

Figures 41 and 42 show the phase plane motion for the Torque Shape controller.

The curve is very similar to those observed for rigid body systems where the

minimum time curve is a parabola. Comparing these to Figures 17 and 18 shows
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the clear flexible interaction associated with the PD controller. This results from

the large initial control effort and subsequent efforts to -viate the ensuing

disturbances to the system.

Using the torque shaping instead of the PD, we gain two clear advantages.

First, the initial torque command is significantly reduced. The peak torque

required in the PD controller is close to three times that required for the torque

shaped case. Second, the position and rate differences used by the controller

remain small so that the linear model derived earlier is justified. The PD

controller uses large angle feedback which contradicts the small deflection

assumption used in our model.

2. Pseudo-Square

The classical Bang-Bang scheme has two major flaws. First, when

applied to the flexible model, it switches frequently. This causes many

discontinuities resulting in the chattering evident from previous results. Second,

the rise time associated with the maneuver cannot be realized by the reaction

wheel. Reference 2 describes a scheme for conducting near minimum time

maneuvers by rounding off the corners of the Bang-Bang square wave torque

and following this modified profile. This gives the wheel time to respond to the

commanded torque assuming a realistic rise time is set. The resulting maneuver

is a near-minimum-time slew which does not over-excite the flexible modes.

The block diagram for the system is shown in Figure 46.

The torque shaping is accomplished by combining sections of a sine

wave with horizontal line sections. The sine function has a period of four times

the specified rise time. The general control law is

U = -Umax f(tr,t,P) = IOz (62)

where um,, = maximum desired torque level

tr = specified rise time
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The function f(t,,t,P) is given byfi Sfl~ 05t~tr
2t,

2 2

f~~ ~ ~ =tsin 2P - tr~<'.+t

2tr tr(63).

The resulting torque model is shown in Figure 44 for a 300 slew. Successive

integration yields the angular position and angular rate reference curves also in

Figure 44.

Discrete Supst-SIOCk Sampling Interval first Sampl "t.12Xats art .otpuats Ish
Psquiu 1.0100 0. 3 13 Parent

Figure 43. Pseudo-Square Torque Profle Block Diagram
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Applying these as references for the flexible assemblage and using the same

feedback gains determined for the PD controller gives the results shown in

Figures 45 and 46 for a 30' and a 600 slew respectively. Comparing these with

the Bang-Bang results indicates that although the Bang-Bang controller completes

the maneuver sooner than the Torque Shaping, it induces oscillations in the

appendage while attempting to maintain nominal control at the desired position.

The actuator is working very hard in all parts of the maneuver compared to the
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energy required for the Torque Shape controller. Figures 47 and 48 show the

arm deflections for the same events.
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Figure 47. Arm Deflection for a 300 Slew
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Figure 48. Arm Deflection for a 60° Slew
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Figures 49 and 50 show the phase plots for the Torque Shape controller.

They are very similar to those observed in the Sinusoidal model with

considerably more overshoot. Experimental results agree with analytical

predictions quite well and show a clear advantage over the oscillating Bang-Bang

behavior.
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Figure 49. Phase Plot for a 30' Slew
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By following position and rate trajectories, the control system is able to

accomplish the slew maneuver without inducing severe transients to the

momentum wheel. Also, the controller does not chatter or switch frequently.

The actual torque path followed is significantly smoother than the modeled

torque because the feedback gains are small. Introducing optimal gains may

improve the system's performance.
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V. BUILDING AN ESTIMATOR

Most of the modem control schemes require full state feedback. Normally

this does not present much of a problem since estimated states can be derived

from available sensor information. With the Flexible Spacecraft Simulator,

however, none of the flexible modes are available.

Both of the dynamic models are derived from rigid body motion combined

with flexible vibration. The fourteen states contain the rigid body position and

rate as well as the six flexible displacements and velocities. These raw states are

mapped into different spaces for each model using modal matrices. Of the

fourteen states, only two are available for direct feedback. The other twelve

must be estimated by some means for the controllers which require full state

feedback. No direct modal information is available since the two sensed states

are the rigid body ones. Consequently, the only information available about the

flexible motion is contained in the analytical model which is known to be

imperfect.

The most obvious method to construct the states is the Kalman estimator.

The results of using this method are given in Chapter IV section B which proves

it to be inadequate for real time control. Applying loop transfer recovery only

improves the rigid body state reconstruction. Another approach is to use the

Kalman estimator with a smarter choice of weighting matrices. The Kalman

state equation is

:L = (A + BG, + KC (64)

where x = true states

= estimated states = x + g (65)
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The system dynamics are

i = Ax +B u

u=G-=Gxj+Ge (66)

Substituting Equations (64) and (66) into the derivative of Equation (65) gives

(A + KCk (67)

This is the basis of the Separation Principle which allows one to build the

Optimal Regulator by assuming that full state feedback is already available. In

effect, the estimator and the regulator are built separately and without knowledge

of each other. However, Equation (66) can be written as

2=(A + BG) x + BG e (68)

This says that the "actual" system dynamics are perturbed by the estimation

error, e. This perturbation is compounded by the REGULATOR gains, G,

which leads to a curious conclusion. Although the regulator and the estimator

may be considered separately, the dynamics of the system are altered by the

regulator gains acting on the estimation error. To build an estimator that will

best return the "actual" dynamics, one might minimize the second term in

Equation (68) using a linear quadratic approach

J =1 eTGTBTBGe dt (69)
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A weighting matrix can be identified from Equation (69) that corresponds to

the Qxx matrix used in the Matrixx version of the Riccati equation solver. Qxx is

the state noise intensity. From Equation (69)

Qx, = GTBTBG (70)

The results of using Equation (70) in the Kalman estimator are shown in

Figures 51 and 52. There is considerable improvement in the reconstruction of

the first two flexible modes and their associated velocities over those attained in

Chapter IV.

Looking at Figures 51 and 52 one can see that the last four modes have time

constants that will play havoc on the dynamic system when fed back. If the

regulator is modified so that the gains corresponding to these states are set to

zero, the feedback controller will be reduced from 141h order to 61h order.

G'=[gl g2g30000g8g9glO000] (71)

Substituting the new 6th order regulator gains (Equation 71) into Equation

(70) and recalculating the estimator gains yields the estimated states shown in

Figures 53 and 54. In effect, this procedure gives the closed loop estimation for

states corresponding to the first three modes and the open loop estimation for the

rest of the states. The sensor noise weighting matrix Qyy remains the same as in

Chapter IV. The analytical and experimental results for a 300 and a 60" slew are

shown in Figures 55 and 56. Comparing these results to Figures 20 and 21 of

Chapter IV, one can see a significant improvement. The arm deflections are

shown in Figures 57 and 58 and are slightly larger than those of Chapter IV.
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The faster slew, time and larger arm deflections are caused by a reduced

weighting on ii.-, input (Ruu =5 instead of Ruu = 7 in Chapter IV).
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VI. SYSTEM MODEL SLEW MANEUVERS

A. EIGENSTRUCTURE ASSIGNMENT (REGULATOR)

The eigenstructure assignment method, developed by J.L. Junkins et al

[Reference 8], allows the system designer to tune a controller by placing the

poles of the system to add stiffness or adjust time constants. The idea behind the

development of the eigenstructure assignment scheme is that the controller must

be as benign as possible to reduce oscillations induced in the flexible appendage.

If the system is forced to maintain its open loop eigenvectors through the control

maneuver, the impact on the flexible portion would be minimized. This can be

accomplished by adding a stabilty margin to the open loop eigenvalues and

adjusting feedback gains. Assuming the solution of Equation (18) is of the form

X = Wext (72)

it becomes

yX = Ay + BH (73)

where U = GX = Gie x'  and H = GW (74)

Equation (73) is obtained by by substituting Equations (72) and (74) into

Equation (18) and combining coefficients of e. Rearranging Equation (72)

gives

WX - Ay = BH (75)
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which is the general Lyapunov equation for Wi. If X is assumed to be

A = A,. - ,mby (76)

then everything in Equation (75) is known except H and W4. H is estimated by

rearranging Equation (75) with the pseudo-inverse of B, using the open loop

eigenvectors and assuming X is defined by Equation (76). The stability margin is

determined based on the desired characteristics of the control system. The

estimation for H, H, is

- (BTBY'IBI(YA - AWi,) (77)

Solving the Equation (75) for W gives an estimated modal matrix, ', which

can be used to find the gain matrix, G.

A = G (78)

B. EIGENSTRUCTURE ASSIGNMENT (ESTIMATOR)

One approach to estimation applies the eigenstructure assignment concept to

find the estimator gains. A standard rule of thumb is to use poles that are five to

ten times stronger than the regulator poles.

kest = Xreg- 0.8 (79)

Using the open loop eigenvectors as a starting point, the same method used

for obtaining the regulator gains may be applied to find the estimator gains.

Some difficulties arise when implementing this estimation scheme.
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The estimated states are assumed to be of the same form as those of Equation

(71). The eigenvalue problem is posed in the same manner as the regulator

problem with one exception. Comparing Equation (67) with Equation (18),

where U = GX, it is immediately apparent that the estimator gains, K, do not

directly multiply the states as the regulator gains do. To obtain the same form as

the regulator problem, the relationships of the right and left eigenvalue problems

will be used. Equation (67) will form the basis of the right eigenvalue problem

and the left eigenvalue problem will be derived from

= (AT + CTKT) f (80)

where f = 1 et and =r eXt (81)

1 = left eigenvector r = right eigenvector

Thus, the associated eigenvalue problems are

X1 = (A + KC) 1

?4= (AT + CTKT)1 (82)

with the properties that the eigenvalues for both equations are equal and the

matrix of eigenvectors are related by [Reference 8],

L = R-T (83)

From this one can solve the gains for the right eigenvalue problem using the

matrix of right eigenvectors and their associated eigenvalues. Once these gains

are found, simply transposing them gives the gains for the esitmator problem of

interest.
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Unfortunately, eigenstructure assignment of the estimator poles requires

more state feedback than is currently available from the FSS. The acheived

eigenvalues are not the same as the target eigenvalues for all the modes.

Specifically, for the FSS only the rigid body modes achieved their target

eigenvalues.
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VII. THRUSTER ACTUATION

A. THRUSTER SYSTEM OVERVIEW

An air thruster system will be used to study the effects of momentum wheel

desaturation on flexible spacecraft. It will then be used to actuate slew

maneuvers in place of the momentum wheel. A schematic of the system is shown

in Figure 59. The air tank will be mounted on top of the momentum wheel

assembly. Flexible air hose will run to a gauge-regulator-manifold assembly

mounted radially from the central body center of rotation. Solenoid valves will

be mounted on the manifold in opposing positions to provide positive and

negative slewing with tangential forces. A part by part explanation of the

thruster system follows. The numbers refer to those in Figure 59.

1. The air tank is a 13.3 cubic foot, 3000 psi tank manufactured by

Sherwood Industries. Its mounting is similar to that of a fire extinguisher which

facilitates ease of replacement without tools. Three tanks were obtained so that a

full replacement is always on hand.

2. The tank valve is a standard scuba valve and was delivered with the

tank.

3. A DIN connector is attached to the tank valve. The DIN connector

is easily detached and attached to the tank valve by hand which enables the user

to replace the tank without tools.

4. This adaptor is required to reduce the DIN connector diameter to

the diameter of the flexible hose.

5. A connector attaches the adaptor to the flexible hose.

6. Flexible hose is used for adaptability of the system placement on the

central body. Since space is limited, future modifications may require the
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movement of some or all of the thruster system parts. Flexible hose allows the

system to be moved without difficulty or redesign.

7. The flexible hose is connected to a filter tee to protect the pressure

regulator from harm. It also allows the placement of the high pressure gauge to

monitor regulator inlet pressure.

8. The snubber protects the pressure gauge from possible pressure

surges.

9. This 0-3000 psi pressure gauge is used to monitor the pressure

regulator inlet. It is also used to determine the replacement of the air tank.

10. The pressure regulator was obtained from Hydracon Corporation

and is used to regulate the pressure from 3000 psi to 200 psi.

11. A connector is needed to attach the outlet of the pressure regulator

to the manifold.

12. The manifold distributes the 200 psi air to each solenoid valve.

Also coming from the manifold is the low pressure gauge.

13. The low pressure gauge is also protected by a snubber.

14. This 0-250 psi pressure gauge monitors the inlet pressure to the

solenoid valves which determines the thrust provided.

15. The thruster valves are solenoids obtained from the Naval Research

Laboratory. They are rated at 0.0224 Ibm/sec with a 10 msec cycle time.

16. Since the solenoid outlet diameter is one-sixteenth of an inch, no

nozzle is required. This results in an insignificant loss of thrust. Thrust

calculations are done in Appendix B.
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Figure 59. Thruster System Schematic

Appendix B contains the thrust calculations for the air system based on

chamber pressure for air.

B. MOMENTUM WHEEL DESATURATION

As mentioned in Chapter IV the cabling to the momentum wheel assembly

creates a spring torque which acts in a negative sense on the central body. When

a slew maneuver is completed, the controller continues to hold the body in

position. Consequently, the momentum wheel gains angular momentum by

counteracting the disturbance torque from the cabling.

Momentum wheel desaturation is accomplished by firing a thruster so that it

creates a torque which acts in a positive sense on the body. The controller will

respond by slowing down the wheel to counteract this new torque in order to
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maintain position. Since the wheel angular momentum is proportional to its

speed of rotation, a decrease in wheel speed means a decrease in angular

momentum.

h, = IwQ (84)

Thrust calculations are given in Appendix B. For a 200 psig chamber

[ressure, the thrust achieved is 0.6 N-rn without a nozzle. Unfortunately, when

the solenoid valve is fully open, the chamber pressure drops to 130 psig which

yields a thrust of 0.35 N-m. The momentum of the thruster pulse is determined

by the pulse magnitude and the pulse duration. Therefore, from Equation (84)

T At = I, ASl (85)

Rearranging Equation (85), the thruster pulse time is

A t = I"'
T' (86)

Figure 60 is the block diagram for the momentum dumping routine. It is

designed to desaturate the wheel when it reaches 1100 rpm. The pulse duration

is 4.25 seconds which will dump 180 rpm by Equation (86). Figure 61

illustrates a 300 slew maneuver followed by a wheel desaturation thruster pulse.

Experimental results compare favorably with the analytical prediction. An eight

degree position offset is induced which the controller corrects within ten

seconds. Figure 62 shows the reduction in wheel speed for the same maneuver.

The tachometer data (dashed line) is digitally filtered to reduce noise resulting in

the two second time lag between experimental and analytical data.
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C. SLEW CONTROL

Thruster slew maneuvers are accomplished using the Bang-Bang control

technique because the thrusters deliver on/off pulses. The same control law

developed in Chapter IVc (Equation (50)) is implemented for slewing. Instead

of timing the pulses, the firing sequence is determined through position and

velocity feedback.

Figure 63 is the block diagram for the system. It contains the same

algorithm except that it orders thruster firings instead of momentum wheel

speeds. Figures 64 and 65 show the experimental results compared with the

analytical predictions. The system performance is much improved over the

previous results (Figures 29 and 30) implemented with a momentum wheel. The

thruster torque level is 0.35 N-m. Initial control switching is more frequent than

predicted but the amount of chattering after completing the slew is much less.

The increased switching at the beginning is caused by noise in the rate sensor.

From Equation (50) it is apparent that as the position difference decreases, the

slew rate dominates the switching law. This becomes critical about halfway

through the maneuver when the argument of the SGN function is close to zero.

The slew time is slightly faster than the momentum wheel bang-bang

maneuver. During the slew, the flexible appendage deforms (Figures 66 and 67)

as it did with the momentum wheel actuator. However, when the central body

reaches the desired position, the thruster actuation acts to dampen the flexible

motion. Momentum wheel actuation acted to resonate the flexible motion of the

arm which caused excessive chattering to maintain position. For this reason

alone the thruster actuated bang-bang maneuver is vastly superior to momentum

wheel actuation.

As stated earlier, the thrusters provide on/off control torques. However, the

significant difference between the full flow (on) operating pressure and the static
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(off) operating pressure indicates that thrust levels are not constant. There must

be an associated rise and set time in which the pressure adjusts between full flow

and static states. The 0.35 N-m torque presented here is only the average value

over a typical thruster pulse. Efforts to minimize this pressure difference are

discussed in the conclusions.
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VIII. CONCLUSIONS

Experiments conducted using the Flexible Spacecraft Simulator have proven

to be very successful. In all cases, experimental data is in close agreement with

analytical predictions. This result alone implies that the linearized models

developed are adequate for all of the controllers discussed in this thesis even

though flexible deformations are not small enough to be considered negligible.

The parameters by which the control schemes are compared are control

effort, slew time and flexible interaction. The goal for each slew maneuver is to

rotate in the shortest time possible while minimizing oscillations in the flexible

appendage. From this point of view, the controller of choice is the sinusoidal

torque-shaping. It ranks the highest in all three areas of interest. The PD

controller and the pseudo-square torque shaping scheme have advantages in

different areas. The PD is a few seconds faster but it requires almost eight times

the control effort for the same maneuver. The flexible interactions are not

significant in either scheme. The updated optimal controller could be useful if

the control effort were not very important. It has the advantage over all of the

others in slew time but the torque used is relatively high. As a result, the

oscillations induced in the flexible appendage are significant. The standard

optimal controller cannot be used until more states are available to the estimator.

Finally, the bang-bang controller is not acceptable because of the chatter it causes

when trying to maintain a certain position. It may be possible to combine the

bang-bang with one of the smoother controllers in a switching algorithm that

slews using the bang-bang and maintains position with the other.

The two analytical models are derived from the same linearized equations of

motion. The first model builds a state-space representation from rigid body
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motion and the cantilever flexible modes. Consequently, the system matrices are

derived from cantilever mass normalized equations of motion. In contrast, the

system modal model forms system matrices which are derived from the system

mass normalized equations of motion. The system modal model has been

developed mostly to provide the matrices necessary for using the eigenstructure

assignment techniques which require system mass normalized matrices. The

drawbacks of this model are the complexity of transforming from physical

coordinates to modal coordinates, the difficulty in connecting the placement of

the poles with system performance and the necessity for full state feedback. The

advantagei include simplified system matrices and ease of system verification.

The difficulty of reconstructing 14 states from two inputs has been the major

source of setbacks in developing a full state feedback controller. The standard

method of forming Qxx completely failed in this application. The "updated"

solution developed in Chapter V yields favorable results but it still has

drawbacks. The major one is that it reduces the 14111 order feedback system to a

6th order feedback system. Obviously, one can only consider this a "full state

feedback" controller if only six states are important. Otherwise, if more states

need to be controlled, the original model may be expanded to include 20 modes

which will then be reduced through the same procedure discussed in Chapter V.

Whatever the case, when fewer states are fed back than those modeled, thp

question of robustness of the optimal controller becomes very important.

Momentum wheel desaturation using thrusters proved to be attainable

without significant flexible interaction. The position offset can be reduced by

several methods. These will be discussed in the next section. Again, the

experimental and analytical results are in close agreement.

Thruster slew maneuvers also proved to be beneficial. The same control law

implemented with thrusters gave faster slew times and almost no flexible

83



interaction around the nominal position. Pressure differentials between full flow

and static conditions required the use of an average torque level. These pressure

variations can be reduced by inserting a reserve tank on the low pressure side of

the regulator to provide a buffer area where pressure fluctuations could be

absorbed. A pressure transducer could be added to the system to provide

pressure reading feedback to the controller which would continuously update the

thruster torque.

A. RECOMMENDATIONS FOR FURTHER STUDY

Recently, the FSS lab has received the System/Observer/Controller

Identification (SOCI) Toolbox for Matlab developed by Dr. Jer-Nan Juang, Dr.

Lucas G. Horta and Dr. Minh Phan. This toolbox allows one to obtain miiimum

order system matrices, observer and ;ontroller gains, and natural frequencies

and damping based on input and output data obtained from an experimental run.

The programs in the toolbox give results in the system modal model form.

When the data is converted from Matrixx data files on the VAX to Matlab data

files, system verification can be accomplished and analytical values for damping

and observer/controller gains will be available.

The system modal model seems very attractive at first. However, as stated

previously, it was developed to implement the eigenstructure assignment routines

which require full state feedback. Without an accurate, estimator the feedback

control is poor. Unfortunately, the estimator solution otained in Chapter V

does not translate well to the system modal model. The additional matrix

transformation of the states does not allow raw position and velocity data to be

fed back. As a result, the estimator is much slower in reconstructing the states

which significantly degrades the feedback controller. When the overhead Vision
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Server system is installed, more states will be available and the eigenstructure

estimator should be reevaluated.

Chapter V outlined a different approach to establishing the estimator state

weighting matrix. This is only a preliminary investigation and deserves more

study. One possibility is to perform a Singular Value Decomposition to discover

its minimum value. A study of the robustness of the reduced order estimator

should be conducted to determine the stability limits.

Research of momentum dumping using thrusters has just begun. Different

algorithms are available and should be implemented. The position offset could

be reduced by pre-positioning the central body so that it would return to its

nominal position as a result of the desaturation firing. Also, the momentum

dump could be accomplished by a series of shorter pulses. This would increase

the overall desaturation period but would decrease the maximum position offset.

Care shou.ld be taken to ensure the frequency of the pulses does not resonate the

flexible appendage. Thruster slew maneuvers are also in their infancy on the

FSS. The bang-bang firing scheme can be modified to include nominal position

control with the momentum wheel, and slewing with the thrusters. Again,

robustness investigations should be made to determine stability margins.

The connection of the hub to the overhead I-Beam should be redesigned to

provide a more stable base. Presently, it is too flimsy causing the center of

rotation to change slightly dur;,g a slew. Also, all electrical connections should

be accomplished through a commutator on the spin axis to eliminate the

influenced of cabling on the central body. The air needed to float the experiment

and to suppor: Lhe air bearing iaay be provided from the thruster air system by

regulating down to 60 psi.
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Future research is planned to include robotic control of a rigid arm. Motors

will be mounted on the shoulder, elbow and wrist of the arm to manipulate it.

This research will expand into robotic manipulation of a flexible arm.
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APPENDIX A

An overriding concern in the implementation of the actual slew maneuvers

has been the action of the momentum wheel motor assembly. Since the motor is

able to spin the momentum wheel at very high speeds before it bums itself out

and since the accelerations on the wheel can also be very high, great care was

taken to ensure that the motor would not spin out of control. The wheel was

manufactured at the Naval Postgraduate School and was statically balanced.

However, the school has no facilities for dynamic balancing. Consequently, it

was not known whether there would be significant wobbling at high rotation

rates from some dynamic imbalance. Additionally, the PMI motor controller has

no function for gradual speed changes. It simply responds to a commanded

voltage and orders the motor to the corresponding speed with maximum

acceleration. Obviously, this situation was unacceptable.

As a result, a method was required to implement a gradual acceleration and

deceleration of the momentum wheel which would act as both a safeguard against

over-torquing the motor and a means of reducing the disturbance to the system

during spin-up/spin-down periods. A nominal wheel speed was set at 1000 rpm

to establish a pitch-bias momentum control system. The nominal wheel speed

was selected because it was a mid-range speed on the motor controller and

because the motor operated smoothest in the region around 1000 rpm.

Another concern which motivated a start-up safeguard was related to the

AC-100. When a session with the AC-100 was ended, it would store whatever

voltage was last commanded on its Digital-to-Analogue converters.

Consequently, when the next session was started, the last voltage (speed)

command to the motor controller from the previous session would be sent to the
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wheel as an initial state. A method for zeroing out the actuator command was

needed to ensure the momentum wheel would not be torqued before the user

could stop it.

Fortunately, the System Build utility in Matrixx was capable of implementing

these requirements. Figure Al is the System Build block diagram of the safety

control scheme used in every actual slew maneuver performed on the table. This

scheme is the underlying controller that remains in effect except when an active

controller is selected. It has four modes of operation. The first is the "spin-up"

mode which orders the wheel to 1000 rpm at an acceleration of 10 rpm/sec. The

"spin-down" modes orders the wheel to 0 rpm at the same acceleration as the

spin-up modes. These accelerations can be changed using a manual increment

switch which will be explained later. The third mode is the "control" mode

which bypasses all of the limiters on the wheel acceleration so that the feedback

control system has maximum response. The fourth mode is the "no effect" mode

which maintains the current wheel speed. This is the default mode at start-up

and allows the user to "do nothing" if events get out of control.

The following is a block-by-block description of the safety control scheme.

Refer to Figure Al for block numbers. They are located in the upper right

corner of each block in the figure.

1. Blocks 1, 6, 13, 28, 33 and 43

Theses blocks filter and convert the tach, rvdt and rate gyro voltages to

rpm, degrees and radians/sec respectively. The filters for the rate gyro and rvdt

are stored in the variable RFILTC and the filter for the tach is in TFILTC.

2. Blocks 35 and 99

These blocks take the derivative of the rvdt signal and convert it to

degrees/second to give analytical body rate.
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3. Blocks 18 and 19

These blocks form the tolerance section. If the tach speed is less than or

equal to two rpm, the controller will order zero wheel speed. Otherwise, it

sends the rpm command from block 11.

4. Block 27

This is the wheel enable block. If the wheel is enabled, it will pass the

rpm command from block 11. If not, it will pass the rpm command from block

18. Consequently, if the wheel is disabled and within two rpm of zero, it will

remain at zero until the wheel is enabled. Conversely, if the wheel is disabled

while spinning , it will not go to zero unless it is within two rpm of zero.

5. Block 8

If "control" mode is selected in block 10, the rpm command from block

21 will be sent to block 2. Otherwise, the rpm from block 27 will pass. This

allows unincremented speed commands to be sent to the wheel during slew

maneuvers for the fastest response. When not in "control" mode, wheel

commands will be incremented for safety purposes.

6. Block 2

Converts rpm to voltage for commanding the motor.

7. Blocks 9, 11, 21, 31, 90, 91 and 92

These blocks are the guts of the safety control system.

a. Block 21

This block orders speed and increment commands depending on which

mode the user chooses.
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"Spin-up" mode

Sends a wheel speed command of 1000 rpm to block 9 and an

increment of 10 rpm/sec to block 92.

"Control" mode

Sends the wheel speed command from the feedback control system

to block 88.

"Spin-down" mode

Sends commanded wheel speed of 0 rpm to block 9 and an

increment of 10 rpm/sec to block 92.

"No effect" mode

Sends 0 increment to block 9 which acts to hold the commanded

wheel speed where it is.

b. Block 91

Sends the absolute value of the rpm error from block 9 to block 92.

c. Block 92

This block sets a fine increment of 1 rpm/sec if the wheel speed is within

20 rpm of commanded wheel speed.

d. Block 31

This is the automatic/manual speed increment selection block. It allows

the user to change the increment while the simulation is running. When in

manual mode, it multiplies the 0.1 set in block 21 by the number selected. For

current operation, the sample interval is 0.01 which means there are 100 samples

per second. If the speed is incremented at every sample time, there will be 100

times 0.1 rpm increase every second. It is important to remember that a change

in the sample interval will change the numerical value of the speed increment.

This block is initially set to automatic and must be actively changed to manual if

desired.
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e. Block 9

Subtracts the tach speed from the commanded speed and outputs rpm

error to block 91 and block 11.

f. Blocks 11 and 90

This block performs the incrementation. If the rpm error is negative

(spin-down), the increment is the negative of the value from block 31.

Therefore, it is subtracted from the current tach speed and set as a command to

the motor. The blockl 1-block9O combination acts as a storage register which

saves the current wheel speed. This allows the increment to be added or

subtracted (depending on block 9 output) to the current wheel speed and sent out

as a wheel command. The higher the increment, the faster the wheel responds.

When the "control" mode is on, the wheel speed is fed back with no increment so

that it tracks the commanded speed. This makes for smooth transitions between

the "control" mode and other modes.

g. Block 10

This block is connected to the interactive animator. When a mode is

selected, it is represented by a -1, 0, 1 or 2. This is the number that the other

blocks read when a mode is selected.

8. Block 8

Converts the torque command from the feedback controller to

acceleration by dividing out the wheel inertia.

9. Block 3

Integrates the command acceleration to give wheel speed in

radians/second.
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10. Block 16

Converts radians/second to rpm.

11. Blocks 83 and 84

These blocks force the controller to set as a wheel command the current

tach speed when "control" mode is off. This allows for smooth switching to

"control" mode so that no spikes are artificially created. These blocks also allow

the user to reset the control wheel command to tach speed when the wheel speed

gets high.
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APPENDIX B

Several decisions must be made in designing the thruster system.

Considerations such as minimum and maximum thrust levels and the length of

the moment arm are key to determining the operating pressure of the system.

Table B 1 contains the physical parameters around which the system must be

built.

For simplicity, isentropic flow is assumed. The operating fluid is either N2

or air, both with a polytropic constant of 1.4. The mass flow rate for hydrazine

of 0.0224 ibm/sec is assumed for air and N2. For an initial try, perfect

expansion is assumed so that the exit pressure, Pe, is the same as ambient

pressure, Pa, 14.7 psig. The problem is to find the exit area, Ae, and the thrust,

F, for chamber pressures, Pc, ranging from zero to 250 psig. The results are

shown in Table B2. The Lorque produced by each thruster should be less than

0.7 N-m. This is an approximation based on the Bang-Bang results where a 0.6

N-m thrust caused unacceptable oscillations. If the solenoid placement is

restricted so that no piece is allowed to protrude from the hub, the longest

moment arm achievable is 14 inches. Using these numbers and converting to

MKS units yields 0.6609 N-m torque at 200 psig chamber pressure. To achieve

perfect expansion, a nozzle is required to increase the exit diameter from 0.045

inches to 0.0683 inches. Since building this nozzle seems hardly worthwhile, an

investigation of the thrust obtained without a nozzle is reasonable. The exit

diameter is now 0.045 inches (the same as the throat diameter) which gives a

torque of 0.6010 N-m. If a larger torque is required the chamber pressure can

be raised. For now, 0.6 N-m is acceptable as an upper limit so that a nozzle need

not be built.
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The governing equations for determining the thrust are

A c I L -f - -) M 2+ I--t-- 2 (B 1")

Pe = P 1 M.__-Z_.32
PePtl+ M 2 1JY- (B2)

F 1Pe r 2 + (Pe - Pa)AexF = FPct+ -WP
Y 1 (B3)

+ ( (134)

where F is thrust. First the Mach number, M, is determined by iterating

Equation (B1). Then the exit pressure is calculated through Equation (B2).

Finally, the thrust is given by Equation (B3) where F is a function of the

polytropic constant in the form of Equation (B4).

Table B1. Physical Parameters

Description J Symbol T Value

Hub Radius Rh 15 inches

Throat Diameter Dth 0.045 inches

Exit Diameter Dex 0.045 inches

Solenoid Length L 1.627 inches

Polytropic Constant Y 1.4

Ambient Pressure Pa 14.7 psig

Mass Flow Rate p 0.0224 lbm/sec
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Table B2. Thrust Values for Various Chamber Pressures

Chamber Pressure (psig) J Thrust (Ibf)

155 0.2967

160 0.3047

165 0.3133

170 0.3221

175 0.3313

180 0.3407

185 0.3502

190 0.3600

195 0.3699

200 0.3799

205 0.3901

210 0.4003

215 0.4106

220 0.4210

225 0.4315

230 0.4420

235 0.4526

240 0.4633

245 0.4740

250 0.4847
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APPENDIX C

This program is provided to show the numerical results of the

Eigenstructure assignment method and the formation of the system modal model.

Program Matrix Formations

THIS PROGRAM SOLVES THE SYSTEM EIGENVALUE PROBLEM FOR

THE FLEXIBLE SPACECRAFT SIMULATOR. IT RETURNS THE SYSTEM

EIGENVALUES AND MODAL MATRIX. PHI REPRESENTS THE MODAL

MATRIX SO THAT

PHI'*M*PHI = I

AND

PHI'*K*PHI = [02]

THE EIGENVALUE PROBLEM IS STATED SO THAT

0)i2 *M*PHIi = K*PHIi

THE SYSTEM NATURAL FREQUENCIES ARE GIVEN IN THE MATRIX

NF WITH THE FREQUENCIES LYING ALONG THE DIAGONAL IN

ASCENDING ORDER.

97



phi 2=[] ;natfreqs=[];

coupl=[- 1.9891 1.2269 0.4363 -0.1395 0.2193 0.0106]';

freqs=[0.8756 2.6375 15.4758 26.9839 43.0998 80.5634]';

I=eye(7);zs--0*I;zr=0O*[1 :7];zc=-O*[1 :b]';

D=coupl'*coupl;Izzo1= 1 O.4 ;Izzo2=Izzol1-D;

DS =coupI* coupl';zeta=0.004;

omega=diag( [freqs]);omega2=omega*omega;

omegac=2*zeta*DS *(..omega) ;omega2c=DS *(..omega2);

DW=2*zeta*coupl' *omega;DW2=coupl'*omega2;

A=[zs I;zr zr;zc -omega2 zc -2*zeta*omega];

A I= [zs zs;0 DW2 0 DW;zc omega2c zc omegac]flzzo2;

B=[zr'; 1;zc]/Izzo2;

B 1= [Izr';0;-coupl]fIzzo2;

Asys=A+AI;

Bsys=B+B 1;

M=[Izzol coupl';coupl eye(6)];

K=[0 zc';zc omega2];

C=[O zc';zc 2*zeta*omega];

[phi l,larnbda]=eig(K,M);

F=philI'*M*phi 1;

[m ,m]=si ze(F);

for i=1:m,

for j=1I:m,

FlI (ij)=O;

end

El (i,i)=F(i,i);

end
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F=F1;

phi=phi 1 *inv(sqrt(F));

phit=[];;

lam=diag(lambda);

for i=1:m,

k=i+ 1;

for j=k:m,

if lam(i)>lamoj)

laml1=lam(i);

phit=phi(:,i);

lam(i)=lamOj);

phi(:,i)=phi(:,j);

lamOj)=laml1;

phi( :,j)=phit;

else

end

end

end

larnbda=diag([lam]);

natfreqs=sqrt(lambda)/(2 *pj);

checkM=phi'*M *phi ;checkK=phit*K *phi;

disp('phi

disp(phi)

disp('eigenvalues=

disp(lambda)

disp(natural frequencies=

disp(natfreqs)
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Program Target Eigenvalues and Eigenvectors

THIS PROGRAM FORMS TARGET EIGENVALUES BY SETTING THE

REAL PART EQUAL TO -1 AND THE IMAGINARY PART EQUAL TO w2.

IT THEN FORMS THE SYSTEM A AND B MATRICES AND FORMS THE

TARGET EIGENVECTORS FROM THE OPEN-LOOP EIGENVECTORS. IT

RETURNS THE CONDITION OF THE TARGET EIGENVECTORS, THE

GAINS REQUIRED TO ACHEIVE THE TARGET EIGENVALUES, AND

THE REALIZED EIGENVECTORS AND ELGENVALUES.

k=0;

tgtev=[];T=[];

i=sqrt(- 1);

for k=I: m,

tgtev(k)= -0. 1 + i*sqrt(lam(k));

tgtev(1)= -0.1 + i*0.0J00001;

tgtev(k+m)=conj(tgtev(k));

end

disp('target eigenvalues')

di sp(tgtev')

TGTEV=diag(ftgtev(l1:m)]);

T=Ileye(m) eye(m);TGTEV conj(TGTEV)];

ct=cond(T);

disp('condition of target eigenvectors')

disp(ct)

Asysl1=[0*eye(m) eye(m);-lambda -2*zeta* sqrt(1anmbda)];

Bsl=phi'*[1 zeros(1,m-1)]';
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Bsys 1 =[zeros(m, 1 );Bs 1];

assign

[Vi ,elI =eig(Asysl+BsyslI *G);

disp('Gains')

Gl=real(G);

disp(G 1)

disp~condition of new eigenvectors')

cvl=cond( VI);

disp(cv 1)

disp('check eigenvalues')

el=diag(el);

disp(el)

Program Assign

THIS PROGRAM IS CALLED BY TARGETEIG TO CALCULATE THE

GAINS

[n,n]=size(Asysl); L--eye(n);

for k=1:n,

end;

Binv=pinv(Bsys 1);

H=Binv*(T*L-Asys1I *T);

psi=Iyap(Asys 1,-L,Bsys1I*H);

G=H*inv(psi);
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Results

phi=

0.3088 0.2288 -0.2258 -0.0891 -0.0294 0.0462 0.0022

0 1.2433 -0.4901 -0.1778 -0.0585 0.0919 0.0044

0 0.0591 1.1379 0.1125 0.0364 -0.0569 -0.0027

0 0.0005 -0.0039 1.0193 0.0191 -0.0231 -0.0010

0 -0.0001 0.0004 0.0065 -1.0020 0.0105 0.0004

0 0.0000 -0.0002 -0.0030 -0.0042 -1.0050 -0.0007

0 0.0000 -0.0000 -0.0000 -0.0000 0.0002 -1.0000

eigenvalues =

l.Oe+03 *

0 0 0 0 0 0 0

0 0.0012 0 0 0 0 0

0 0 0.0092 0 0 0 0

0 0 0 0.2490 0 0 0

0 0 0 0 0.7311 0 0

0 0 0 0 0 1.8765 0

0 0 0 0 0 • 0 6.4906
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natural frequencies

0 0 0 0 0 0 0

o 0.1750 0 0 0 0 0

0 0 0.4826 0 0 0 0

0 0 0 2.5114 0 0 0

0 0 0 0 4.3034 0 0

0 0 0 0 0 6.8944 0

0 0 0 0 0 0 12.8222

target eigenvalues

-0. 1000 - 0.OOO0i

-0.1000 - 1.0997i

-0.1000 - 3.0324i

-0. 1000 -15.7797i

-0.1000 -27.0393i

-0.1000 -43.3187i

-0.1000 -80.5644i

-0.1000 + 0.0000i

-0.1000 + 1.0997i

-0.1000 + 3.0324i

-0.1000 +15.7797i

-0. 1000 +27.0393i

-0. 1000 +43.3187i

-0. 1000 +80.5644i
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condition of target eigenvectors

8 .0966e+07

Gains

Columns 1 through 7

-0.0327 -0.1886 0.3694 0.6278 -0.1214 2.3436 78.8764

Columns 8 through 14

-0.6596 -0.8271 0.7708 0.8269 -0.5555 3.1720 198.7334

condition of new eigenvectors

6.2282e+07
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check eigenvalues

-0.1000 -80.5644i

-0. 1000 +80.5644i

-0.1000 -43.3 187i

-0. 1000 +43.3187i

-0.1000 -27.0393i

-0. 1000 +27.0393i

-0. 1000 -1I5.7797i

-0.1000 +15.7797i

-0.1000 - 3.0324i

-0.1000 + 3.0324i

-0.1000 - 1.0997i

-0.1000 - 0.0000i

-0.1000 + 0.0000i

-0.1000 + 1.0997i
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Asysl =

1.Oe+03 *

Columns 1 through 7

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 -0.0012 0 0 0 0 0

0 0 -0.0092 0 0 0 0

0 0 0 -0.2490 0 0 0

0 0 0 0 -0.7311 0 0

0 0 0 0 0 -1.8765 0

0 0 0 0 0 0 -6.4906
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Columns 8 through 14

0.0010 0 0 0 0 0 0

0 0.0010 0 0 0 0 0

0 0 0.0010 0 0 0 0

0 0 0 0.0010 0 0 0

0 0 0 0 0.0010 0 0

0 0 0 0 0 0.0010 0

0 0 0 0 0 0 0.0010

0 0 0 0 0 0 0

0 -0.0000 0 0 0 0 0

0 0 -0.0000 0 0 0 0

0 0 0 -0.0001 0 0 0

0 0 0 0 -0.0002 0 0

0 0 0 0 0 -0.0003 0

0 0 0 0 0 0 -0.0006
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Bsysl =

0

0

0

0

0

0

0

0.3088

0.2288

-0.2258

-0.0891

-0.0294

0.0462

0.0022
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APPENDIX D

Verification of the modal frequencies for the system modal model is easily

accomplished by randomly perturbing the rigid-flexible system and analyzing the

spectrum of the acquired data. Figure Cl is the autocorrelation spectrum of the

RVDT position information obtained from such a method. The peaks represent

the modal frequencies. Notice the peak at zero representing the rigid body

frequency.

I s MODE

2 nd MODE- 4th MODF ___ I___ __

4.25 Hz

lows * ~ _ _ -_

-- ______EA* 7 -t_______

2.3Hz . 6thSi~dD 6dMOt)E

-. I 4'z 126Hz:

711

0 2 4 6 1 is 12 14 Is

Figure C1. Modal Frequency Verification
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The analytical and experimental frequencies are given in Table Cl for

comparison.

Table C1. System Modal Frequencies

Mode Analytical Experimental Percent Error

(I-) (Hz) (%)

1 0.175 0.19 8.6

2 0.483 0.480 0.6

3 2.51 2.30 8.4

4 4.30 4.25 1.2

5 6.89 8.40 21.9

6 12.89 12.6 2.3
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